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Abstract: The need for fertilizer increases since the soil has lost its nutrients due to excessive use. When optimum fertilizer is 

provided to the soil, it will help improve plant growth and even soil fertility. Recognize that increased fertiliser use could harm 

the soil and land. After applying excessive fertilizer, harmful greenhouse gases are released into the atmosphere, which pollutes 

the air. Not only that, but also increases the number of nutrients in adjacent lakes and ponds, which is undesirable. However, if 

we know the optimal amount, we can boost revenues while reducing environmental damage. Chemical fertilisers based on 

nitrogen, phosphorous, and potassium are used to fertilise crops in agriculture. However, when utilized in an unoptimized 

manner, it has negative consequences. For example, soil mineral loss, acidification, various pollutions, etc. Fertilizer 

optimization is critical and must be addressed. The amount of fertiliser sprayed on the crops is optimised in this research by 

combining hybrid OBHS (Opposition-based Harmony Search) with MRFO (Manta Ray Foraging Optimization). OBL is a 

machine-learning algorithm that accelerates soft computing algorithm convergence. It computes both the original and the 

inverse solution. MRFO, also known as a metaheuristic optimizer, is a nature-inspired algorithm that simulates different 

foraging behaviors of manta rays and is proposed for tackling real-world engineering issues. When dealing with optimization 

and real-world engineering problems, it has the best strategy for handling computational cost and solution precision. Using 

these methods, fertiliser is expected to pose no threat to the soil, crop, or ecosystem. The results reveal that OBHS with MRFO 

outperforms the other strategies, with a fertiliser optimization accuracy of 99%. This is, we believe, the first work to attempt to 

combine these two strategies for this goal. 
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1. Introduction 

 

Knowing the amount of fertiliser needed is a possibility; no one would take the chance and prefer to witness the worst-case 

situation. In just five years, India's population has increased from 132.45 million in 2014 to 1.39 billion in 2021. Filling the 

requirement for food for many years and compensating for the increasing demand each year has depleted the soil's nutrients. 

As a result, one of the reasons for this increased demand for food is population expansion [1]. Furthermore, because of 
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urbanisation and industrialization, food security is becoming extinct [2]. Such issues have not been appropriately addressed. 

As a result, their chances of facing adversity and decreasing food availability are enhanced. Farmers utilise nitrogen-based 

fertilisers to achieve high crop yields, which are undoubtedly valuable resources, but their overuse could be hazardous. Farmers, 

on the other hand, are mindlessly exploiting them to attain a large yield and, thus, a big income [3]. The increased emission of 

pollutants such as N2O and NH3 caused by run-off and nitrogen leaching causes eutrophication of water bodies, which is why 

nitrogen-based fertilisers negatively impact plant development [4]. A comprehensive and sophisticated approach is required to 

maintain high crop yields while avoiding environmental damage, soil degradation, air, and water pollution [5]. With this in 

mind, numerous researchers are attempting to determine the optimal quantity of fertiliser required for various crops. And 

according to one study, excessive fertilisation raises the level of heavy nutrients in agricultural soil. As a result, before using 

any fertiliser, the suggested nutrient content of the soil should be evaluated [6]. It will be advantageous to optimise fertiliser, 

which can be accomplished easily using the recommended approach presented in this study. In Layman's terms, it's determining 

the ideal amount of fertiliser to apply to crops per crop. Fertilizer optimization is also important in achieving desired yields. In 

most cases, farmers do not have the financial resources to meet their small farm's fertiliser needs. 

 

They can, however, increase their revenues by using a fertiliser with an optimal rate of crop-nutrient combinations [5]. Profits 

are based on various factors, including fertiliser cost, crop value, crop response to nutrient supply, and yield outcome. Although 

there are numerous advantages to determining the optimal fertiliser value, there is a significant downside to excessive fertiliser, 

which also clearly states that only a small amount of fertiliser should be used. This disadvantage is experienced by people or 

others who consume those crops. People presently face various health issues, which are listed in Table 1. This table clarifies 

which chemical fertiliser and heavy metals produce certain health problems. Before using fertiliser on a crop, the amount 

applied fertilizer should be calibrated to maximise profitability while minimising environmental impact. Using opposition-

based harmony search with manta ray foraging optimization, the amount of fertiliser that needs to be provided to the crops is 

estimated. 

 

Table 1: Impact of heavy metal on the human body 

 

Chemical Fertilizer Heavy Metal Health Problem 

Single Super Phosphate (SSP), 

Potash (K), Urea (N), 

Cadmium (Cd) Bone density reduction and damage to kidney and liver, carcinogenic 

Urea (N) Arsenic (As) Gastrointestinal impairment, damage to heart, skin, and liver, 

carcinogenic. 

Single Super Phosphate (SSP), 

Urea (N) 

Lead (Pb) Neurological disorders, weakening of bones and hypertension, hand-

eye coordination impairment, lower IQ and attention problems, 

encephalopathy 

 

The following is the text of the paper: The literature review of related studies will be presented in the following section. The 

backdrop of the Opposition-based Harmony Search is described in section 3, along with its pseudocode. The background of 

Manta Ray Foraging Optimization and its pseudocode are presented in section 4. The proposed approach, Opposition-based 

Harmony Search with Manta Ray Foraging Optimization, is described with a flowchart in section 5. A complete empirical 

investigation with dataset description, experimental measures, and experimental findings is described in section 6. A 

comparative analysis is discussed in section 7, and we finish the paper with some findings and future work in section 7. 

2. Literature Review 

Many studies have sought to overcome the problem and assist farmers in achieving high yields with various crops. The POAMA 

(Predictive Ocean Atmosphere Model for Australia) and the APSIM (Agricultural Production Systems Simulator) were utilized 

to manage appropriate nitrogen fertiliser in different seasons of the wheat crop in Western Australia [7]. POAMA provides 33 

ensemble members and uses a 33-year hindcast data set in the paper's research. APSIM has evolved from a less well-known 

farming systems framework into a big collection of models utilised by a larger number of modellers around the world. They 

calculated rainfall, grain yield, and gross margin data in the article. The CERES-Maize model of the DSSAT (Decision Support 

System for Agrotechnology Transfer) was used to research Florida sweet corn crops to determine the best irrigation and 

nitrogen management strategies[8]. The important parameters in their study were dry matter yield and cumulative N leaching. 

Another study on the North China Plain generated regional N rate guidelines based on wheat and maize crops to examine 

changes in the optimal N rate [9].  

The MOFOA (Multi-Objective Fruit Fly Optimization Algorithm) model was used to examine the productivity of oil crops in 

East China to optimize variable-rate fertilization [10]. Crop yield quality, energy usage, and environmental effects were the 

main criteria in their study. A study was undertaken on China's winter wheat–rice rotation [11]. They employed the linear-plus-

plateau model to achieve their goal of determining the optimal nitrogen input in their investigation. Environmental effects and 
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grain nutritional quality were the most important factors in their research. Researchers in the article [12] studied barley fields 

in France to develop novel nitrogen management methods to maximize calibrated yields while lowering nitrogen losses. 

Temperature, incident radiation, rainfall, and evapotranspiration were used as criteria in the study. Wheat crop's optimal 

regional nitrogen application threshold in the north China Plain was employed by Wang et al. [13]with linear regression models 

in their research. Yield, soil inorganic-N residual, nitrate-N leaching, and ammonia volatilization were the main indicators in 

the process. As a result, we can see that diverse studies have been conducted on various crops. The MOEA (Multi-Objective 

Evolutionary Algorithm) approach was utilised in Darvishi and Kordestani's study to optimise water scheduling in irrigation 

canal networks. Another use of MOEA with NSGA-II (Non-Dominated Sorted Genetic Algorithm) was determining the best 

nitrogen fertilizer for North China plain wheat and maize crops [14]. The major measures were the yield, N balance, a single 

score, N uptake by grain and the entire plant, economic, and N use efficiency. 

3. Background of Opposition-based Harmony Search 

The Opposition-based Harmony Search technique combines oppositional-based learning and Harmony Search. In this scenario, 

the Harmony Search mutation operation employs oppositional-based learning. Let 𝑋 signify the most recent candidate solution 

created by combining the previous members from the Harmony Search memory. The parameters are determined in two steps 

according to the Harmony Search conditions: 

• The mutations 𝑋 and �̅�′ are calculated in the first step. 

• The opposition number of �̅�′ and �̅�∗ is determined in the second phase using a pre-defined Oppositional based learning 

probability, Probability𝑜𝑏𝑙[15]. 

 

In other words, the Probability𝑜𝑏𝑙  in Oppositional learning and Harmony Search depends on Oppositional based learning. [ai, 

bi], i = 1, 2, …, n are based on the range of current members of the Harmony Search memory. The fitness of both the �̅�′ and�̅�∗ 

is calculated, and the results are compared. Only with good fitness will Harmony Search memory be kept as the most recent 

candidate solution for upgrading Harmony Search memory in the future procedure. It's also worth noting that when 

oppositional-based learning and Harmony Search processes advance, the ranges of [ai, bi] shrink, potentially affecting the 

enhanced intersection of the HO (Hybrid Optimization) technique. In other words, the examiner reaches should be separated 

algorithmically based on which of �̅�′ and �̅�∗ improves the accuracy of the examiner reaches. 

 

This looping procedure is repeated until a current conclusion standard is raised higher. It can be concluded that the advancement 

of oppositional-based learning in the oppositional-based learning and Harmony Search techniques is unquestionably beneficial 

for constructing the best application result members and thus improves the overall approach features of the main Harmony 

Search technique. 

3.1. Pseudocode of Opposition-based Harmony Search 

START 

1. Initiate the particles in the Harmony Search memory at random. 

2. Create a solution candidate using a mix of the Harmony Search memory members that are now available. 

3. To alter a construct solution candidate, apply pitch adjustment distance after completing step 2. 

4. Assess the construct solution candidate's fitness. 

5. Create the opposition number for the construct solution candidate after generating the construct solution candidate. 

6. Assess the opposition number's suitability for the construct solution candidate. 

7. Once step 6 has been completed, update the Harmony Search memory members. 

8. Keep repeating these procedures until the termination criteria are met. 

END 

4. Background of Manta Ray Foraging Optimization 

The Manta Ray Foraging Optimization approach is a metaheuristic optimization method inspired by the OFT (Optimal Foraging 

Theory) that MRs (Manta Rays) use to accomplish their objectives. This approach was proposed by Zhao et al. [16]. This 

method uses three foraging indicators: chain foraging, somersault foraging, and cyclone foraging. The planned goal for a 

successful outcome in the chain foraging stage is for MRs to devote their whole attention to the group of species. As a result, a 

Foraging Chain (FC) emerges. Everyone moves closer to sustenance and the MR to the right of it, and the character's 

modernizing operation is ensured right away to achieve accurate results in every loop and the result of the one to the right of 

the current specification. The foraging method's chain can be represented mathematically as follows: 
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𝑋𝑖
(𝑡+1)

= {
𝑋𝑖

(𝑡)
+ 𝑟′. (𝑋𝑏𝑒𝑠𝑡

(𝑡)
− 𝑋𝑖

(𝑡)
) + 𝛼. (𝑋𝑏𝑒𝑠𝑡

(𝑡)
− 𝑋𝑖

(𝑡)
)   𝑖 = 1

𝑋𝑖
(𝑡)

+ 𝑟′. (𝑋𝑖−1
(𝑡)

− 𝑋𝑖
(𝑡)

) + 𝛼. (𝑋𝑏𝑒𝑠𝑡
(𝑡)

− 𝑋𝑖
(𝑡)

)   𝑖 = 2, … , 𝑁′
(1) 

where, 𝑋𝑖
(𝑡)

= 𝐴𝑡 𝑠𝑡𝑒𝑝 𝑡, 𝑒𝑎𝑐ℎ 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑖𝑠 𝑖𝑛 𝑎 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛.; 

𝑟′= range of [17] random vectors; 

𝑋𝑏𝑒𝑠𝑡
(𝑡)

= 𝐴𝑡 𝑠𝑡𝑒𝑝 𝑡, 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛; 

𝑁′ = 𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑛𝑡𝑎 𝑟𝑎𝑦𝑠; 

𝛼 = 𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡that can be defined as follows: 

𝛼 = 2 × 𝑟′ × √|log (𝑟′)|                                                                                                                                                                           (2) 

According to equation 1, the location of the ith individual 𝑋𝑖−1
(𝑡)

 and the best one 𝑋𝑏𝑒𝑠𝑡
(𝑡)

is dependent on the position of the (i−1)th 

individual 𝑋𝑖−1
(𝑡)

. Once the position of the group of organisms (plankton) is recognised, MRs will link the developing chain and 

then float down to the target in a spiral pattern. Furthermore, in the CF (Cyclone Foraging) for spiral swimming, each float 

toward the MRs in front of it is monitored. The following is how this scenario can be expressed: 

{
𝑋𝑖

(𝑡+1)
= 𝑋𝑏𝑒𝑠𝑡 + 𝑟′. (𝑋𝑖−1

(𝑡)
− 𝑋𝑖

(𝑡)
) + 𝑒𝑏𝜔. cos(2𝜋𝜔) . (𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑖

(𝑡)
)

Υ𝑖
(𝑡+1)

= Υ𝑏𝑒𝑠𝑡 + 𝑟′. (Υ𝑖−1
(𝑡)

− Υ𝑖
(𝑡)

) + 𝑒𝑏𝜔. sin(2𝜋𝜔) . (Υ𝑏𝑒𝑠𝑡 − Υ𝑖
(𝑡)

)
(3) 

where, 𝜔, = range of [17] random numbers, the CF stage can be as follows: 

𝑋𝑖
(𝑡+1)

= {
𝑋𝑏𝑒𝑠𝑡 + 𝑟′. (𝑋𝑏𝑒𝑠𝑡

(𝑡)
− 𝑋𝑖

(𝑡)
) + 𝛽. (𝑋𝑏𝑒𝑠𝑡

(𝑡)
− 𝑋𝑖

(𝑡)
)   𝑖 = 1

𝑋𝑏𝑒𝑠𝑡 + 𝑟′. (𝑋𝑖−1
(𝑡)

− 𝑋𝑖
(𝑡)

) + 𝛽. (𝑋𝑏𝑒𝑠𝑡
(𝑡)

− 𝑋𝑖
(𝑡)

)   𝑖 = 2, … , 𝑁′
                                                                                                    (4) 

where𝛽 = 𝑊𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 that can be defined as follows: 

𝛽 = 2𝑒𝑟′
1 (

𝑇−𝑡+1

𝑇
) . sin (2𝜋𝑟′

1)                                                                                                                                                                (5) 

where𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑒𝑝; 

𝑇 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑒𝑝𝑠; 

𝑟′
1= range of [17] random numbers; 

The CF makes excellent utilisation of the top solutions regions, as do all MRs who seek nourishment created on their reference 

points. Furthermore, this methodology improves the assessment method by forcing entities to search out new locations that are 

not currently the best responses. This can be performed by assigning a random location in the search region as follows: 

𝑋𝑟𝑎𝑛𝑑 = 𝑙𝑏 + 𝑟′. (𝑢𝑏 − 𝑙𝑏)                                                                                                                                                                        (6) 

𝑋𝑖
(𝑡+1)

= {
𝑋𝑟𝑎𝑛𝑑 + 𝑟′. (𝑋𝑟𝑎𝑛𝑑 − 𝑋𝑖

(𝑡)
) + 𝛽. (𝑋𝑟𝑎𝑛𝑑 − 𝑋𝑖

(𝑡)
)   𝑖 = 1

𝑋𝑟𝑎𝑛𝑑 + 𝑟′. (𝑋𝑖−1
(𝑡)

− 𝑋𝑖
(𝑡)

) + 𝛽. (𝑋𝑟𝑎𝑛𝑑 − 𝑋𝑖
(𝑡)

)   𝑖 = 2, … , 𝑁′
(7) 

where, 𝑙𝑏 = 𝑇ℎ𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠′ 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑠; 

𝑢𝑏 = 𝑇ℎ𝑒 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠′ 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑠; 

𝑋𝑟𝑎𝑛𝑑 = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒 𝑎𝑡 𝑟𝑎𝑛𝑑𝑜𝑚; 

The food is observed as a hinge in the MRFO final stage, and the SF (Somersault Foraging) is followed. Each MR tends to drift 

back and forth about the hinge during this phase, eventually returning to its original place. This can be mathematically stated 

as follows: 
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𝑋𝑖
(𝑡+1)

= 𝑋𝑖
(𝑡)

+ 𝑆. (𝑟′
2. 𝑋𝑏𝑒𝑠𝑡 − 𝑟′

3 . 𝑋𝑖
(𝑡)

) 𝑖 = 1,2, … , 𝑁′(8) 

where𝑆 = 𝑆𝑜𝑚𝑒𝑟𝑠𝑎𝑢𝑙𝑡 𝑓𝑎𝑐𝑡𝑜𝑟; 

𝑟′
2 𝑎𝑛𝑑 𝑟′

3= range of [17] random numbers; 

Every individual can transfer to any position in the search space between its current position and an equivalent distance around 

the hinge, according to equation 2. The distance between the MR location and the best one diminishes throughout this phase, 

indicating that the original solutions converge. As a result, the flexibility decreases as the SFR (Somersault Foraging Range) is 

used more frequently. 

4.1. Pseudocode of Manta Ray Foraging Optimization 

START 

1. Set the particle sizes to their default values. 

2. Define the goal function. 

3. Determine each level of fitness. 

4. Calculate the forage chain, cyclone, and somersault. 

5. Check the chain < cyclone < somersault. 

6. Obtain the greatest options after completing step 5. 

7. Keep repeating these procedures until the termination requirements are met. 

END 

5. Fertilizer Optimization Model 

After reading various research articles and conducting extensive research into the benefits of various algorithms, it is clear that 

fertiliser optimization is a critical step in obtaining the optimal fertiliser supply. A quantity that will be used for the crop to 

avoid the negative repercussions of improper fertiliser application. In other words, it will prevent harmful environmental 

repercussions. Fertilizer optimization is based on input values such as crop, soil, and fertilizer data. The major goal of this 

strategy is to reduce the amount of fertiliser used, as illustrated in Equation 9. Crop nutrient requirements are the constraints 

that can be satisfied or exceeded, as illustrated in Equation 10. The inequality given in Equation 10 allows a massive amount 

of macronutrient application. The yields are neither predicted to be harmed nor increased due to this. The earning potential is 

lowered to some level as a result of enticing huge fertilisers. 

Minimize C= ∑ ∑ ∑ [∑ 𝑝𝑖𝑖 𝐹𝑖𝑟𝑐]𝑎𝑟𝑐𝑖𝐶𝑇 (9)  

Subject to: 

∑ 𝑛𝑖𝑗𝐹𝑖𝑟𝑐 ≥ 𝑅𝑐𝑗 − 𝑆𝑐𝑗𝑗 (10) 

The overall fertiliser quantity, represented by variable C, needs to be reduced. The fertiliser application rate i for crop c in the 

region r is equal to the variable. 𝐹𝑖𝑟𝑐. The remaining notations are described in the following paragraphs: parameters such as 

𝑎𝑟𝑐is the region of r planted crop area C. The principal content of macronutrients, i.e., j=N, P, K for commercial fertilizer i for 

nutrient j, is indicated by 𝑛𝑖𝑗. The crop c nutrient j needs is 𝑅𝑐𝑗 and 𝑆𝑐𝑗  stands for soil-supplied nutrient, which refers to the 

amount of 𝑅𝑐𝑗 that can be reduced due to soil nutrient build-up while meeting crop requirements [12, 13]. 

6. Proposed Approach 

This section overviews how to increase local minimal stagnation and low convergence rate by combining Opposition-based 

Harmony Search with Manta Ray Foraging Optimization. There are two approaches to using Opposition-based Harmony Search 

with Manta-Ray Foraging Optimization in general: 1) During the initialization phase and 2) During the update phase. At first, 

the suggested method selects populations at random and seeks solutions. This can be summed up as follows: 

Concerning the location vectors 𝑥𝑖, let the chosen random populations be 𝑋 with a size 𝑁′. 

where, 𝑥𝑖 = [𝑥𝑖1 , 𝑥𝑖2, 𝑥𝑖3, … , 𝑥𝑖𝑑] 𝑖 = 1, 2, 3, … , 𝑁′ and 𝑑 = 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑒𝑙𝑚 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠. The members of the 

opposite solutions set �̅�′ are then computed as follows: 

�̅�′𝑖 = 𝑢𝑖 + 𝑙𝑖 − 𝑋𝑖(11) 
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where, 𝑢𝑖 = 𝑇ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑝𝑎𝑐𝑒′𝑠 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑and 𝑙𝑖 = 𝑇ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑠𝑝𝑎𝑐𝑒′𝑠 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑. 

Finally, from the union set of 𝑋 ∪ �̅�′, the number of best solutions 𝑁′ will be chosen to establish a new population. Finally, the 

best solutions are derived from the newly created populations. After you've completed all of the procedures in the initialization 

stage. The proposed method keeps its solutions up to date. After changing the solutions, the Opposition-based Harmony Search 

will locate the opposite solution sets, just as before. The fitness function values are then determined and from the union set of 

𝑋 ∪ �̅�′, the number of best solutions 𝑁′ is chosen to generate a new population. This process is repeated until the algorithms 

meet the stopping criteria. Figure 1 depicts the flowchart of the suggested method. 

 
 

Figure 1: Flowchart of the Opposition-based Harmony Search with Manta-Ray Foraging Optimization 

 

7. Empirical Study 

 

The suggested technique, Opposition-based Harmony Search with Manta Ray Foraging Optimization, was built using Google 

Colab on a PC with an AMD E1-6010 APU running at 1.35 GHz and 4GB of RAM. The dataset [18] was divided into two 

halves, Training and Testing, in an 80:20 ratio. This model was built using the [18] dataset. The dataset descriptions are listed 

in Table 2. 

Table 2: Dataset descriptions 

 

Variable Description 

Temperature Temperature in Celsius degrees 

Humidity Percentage of relative humidity 

Moisture The mass-to-mass ratio of water 

Soil Type Different Soil Types 

Crop Type Crops by Type 

Nitrogen Nitrogen Content in Soil (percentage) 
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Potassium Potassium Content in Soil (percentage) 

Phosphorus Phosphorus Content in Soil (percentage) 

Fertilizer Name Fertilizers of various varieties are utilised for different types 

of soils and crops. 

 

7.1. Experimental Measure 

A CM (Confusion Matrix) can be used on a set of reference sequences to characterise the performance of a classifier [19]. In 

this context, TP (True Positive) indicates the successful detection of a potentially dangerous state, while TN (True Negative) 

indicates the detection of a non-potentially dangerous state. False positives (FP) occur when a safe condition is incorrectly 

detected as dangerous, while false negatives (FN) occur when an unsafe condition is incorrectly classified as safe (False 

Negative).  Several parameters that can be used to evaluate a binary classifier's efficacy can be extracted using a CM.  The 

following are the details [20]: 

1. Accuracy: It denotes the degree to which the measured value is indicative of the actual value. Accuracy, for the sake 

of this investigation, means the degree to which forecasts are accurate. It can be stated as follows: 
𝑇𝑃 +𝑇𝑁

𝑇𝑁+𝐹𝑃+𝐹𝑁+𝑇𝑃
. 

2. Precision: The ratio equals the number of true positives divided by the total number of true and false positives. In 

this example, the hazardous state is correctly identified as hazardous. It can be stated as follows: 
𝑇𝑃 

𝐹𝑃+𝑇𝑃
. 

3. Recall: It's the precision with which one can determine the proportion of TP in a given data set. In this analysis, 

sensitivity is defined as the fraction of potentially dangerous states that were correctly predicted as a percentage of 

all potentially dangerous states in the dataset. It can be stated as follows:
𝑇𝑃 

𝑇𝑃+𝐹𝑁
. 

4. F1 score: It evaluates the precision of the test. Precision and recall are sometimes known as the weighted average or 

harmonic mean. It can be stated as follows: 2*
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
. 

 

7.2. Experimental Results 

The results of the Opposition-based Harmony Search with Manta Ray Foraging Optimization are presented in this section. 

Table 3 shows the results of various measures used to optimize fertiliser consumption. Figures 2 and 3 illustrate the obtained 

metrics value and the accuracy graph, respectively. 

Table 3: Values obtained for fertiliser consumption 

Accuracy Precision Recall F1-score 

99% 97% 95% 96% 

 

Figure 2: Values obtained for fertiliser consumption                   Figure 3: The accuracy obtained for fertiliser consumption 

In this study, fertiliser optimization is done using the Opposition-based Harmony Search with the Manta Ray Foraging 

Optimization technique, which has obtained a 99% accuracy from 0 to 10, according to Figure 3. The recommended approach 
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also had a precision percentage that was 2% lower than the actual accuracy. Furthermore, the recall rate has increased to 95%, 

1% lower than the F1 score. Overall, they have all attained an accuracy rate greater than or equal to 95%. 

8. Comparative Analysis 

Opposition-based Harmony Search, Manta-Ray Foraging Optimization, and Opposition-based Harmony Search plus Manta-

Ray Foraging Optimization are all compared in this section. The values obtained for several measures in optimising fertiliser 

consumption for Opposition based Harmony Search and Manta-Ray Foraging Optimization are shown in Table 4. The resulting 

metrics value is shown in Figure 4, and the accuracy graph for Opposition based Harmony Search is shown in Figure 5. Figures 

6 and 7 illustrate the obtained metrics value and the accuracy graph for Manta-Ray Foraging Optimization, respectively. 

Table 4: Values obtained for fertiliser consumption 

Algorithm Accuracy Precision Recall F1-score 

Opposition-based Harmony Search 96% 94% 94% 94% 

Manta-Ray Foraging Optimization 94% 92% 91% 91% 

 

 

 

 

 

 

 

 

 

 

Figure 4: Precision of OBHS fertiliser usage                                      Figure 5: OBHS fertiliser consumption accuracy  

 

Figure 6: MRFO fertiliser usage values                                              Figure 7: MRFO fertiliser consumption accuracy  

The results demonstrate that Opposition-based Harmony Search with Manta Ray Foraging Optimization outperforms 

Opposition-based Harmony Search plus Manta-Ray Foraging Optimization regarding fertiliser consumption optimization. 

Figure 8 indicates how well the suggested algorithm performs regarding fertiliser consumption accuracy. 
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Figure 8: Accuracy comparison of different approaches for fertiliser consumption 

The results of the Opposition-based harmony search and Manta Ray Foraging Optimization algorithms are presented in this 

section. Accuracy, precision, recall, and F1-score are all reported and compared, as well as with a mixture of both algorithms. 

The best on the list has been determined to be OBHSA+MRFO. Manta-Ray Foraging Optimisation is 2% less accurate than 

OBHSA on an individual basis. When compared to MRFO, OBHSA has a higher individual performance rate. As a result, 

OBHSA precision is 2% higher than MRFO. According to Table 4, the biggest difference in OBHSA and MRFO performance 

is 3% for recall and F1-score. In the graph of OBHSA time vs. accuracy from 0.0 to 0.8, the accuracy achieved 80% and 

continued to 96% 

9. Discussion 

This research suggests using the OBHS+MRFO method, which is accurate, to be the best technique in identifying the optimal 

fertiliser. A user can obtain data on the required fertilizer for their crop after employing the proposed method. Many outcomes 

are highlighted in the experimental part while testing the accuracy of OBHS+MRFO, OBHS, and MRFO algorithms. When we 

look at recall and F1 scores, MRFO has the lowest percentage (about 91%), and OBHS has the lowest percentage 

(approximately 94%) among its five variables when we look at precision, recall, and F1-score rate (the four factors). When 

MRFO and OBHS are combined, the lowest number is 95%, exclusively for recall. By subtracting 5% from the accuracy value 

of MRFO and 3% from the accuracy value of OBHS, the accuracy values of MRFO+OBHS are increased by 5% and 3%, 

respectively. When both of them are used together, there are various advantages. In the experimental part, MRFO and OBHS, 

as well as MRFO+OBHS, are compared independently. This strategy will bring you convenience and profit. Regardless of a 

farmer's education or experience, the recommended approach can potentially maximize the return on their investment. 

10. Conclusions 

A hybrid strategy to provide optimal fertiliser quantity is being used to contribute to the wide agriculture field. Implementing 

the system, it is believed, will significantly influence and assist farmers in overcoming their obstacles and ending their difficult 

times. Farmers will know everything beforehand, aiding newcomers without expertise in making judgments and taking action. 

The research is being carried out to achieve the optimal fertiliser quantity. Farmers will profit in various ways due to this, 

including crop increase, which will ultimately improve their entire lifestyle. This will also benefit the ecosystem and the 

environment. Additional solutions can be investigated by incorporating an optimization method to enhance the agricultural 

sector. Because the investment in fertilizer will benefit farmers, it will also encourage them to believe that agriculture is a viable 

source of income. Increases in their income will also convince them that they can rely on the same source of income for their 

children's future. Every field has adopted advances, and agriculture may also benefit from them. This strategy could also be 

improved, making it more helpful and efficient. This could also lead to people investing and earning their own money. When 

agriculture improves, perhaps authorising loan amounts will be easier. 
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